

博士研究生培养方案

(2025年)

研究生院 二〇二五年九月

目 录

一、江苏科技大学攻读全日制学术型博士研究生培养方案总则	1
1. 船舶与海洋工程学科全日制学术型博士研究生培养方案	8
2. 海洋技术与工程学科全日制学术型博士研究生培养方案	16
3. 系统科学学科全日制学术型博士研究生培养方案2	22
4. 管理科学与工程学科全日制学术型博士研究生培养方案2	28
5. 材料科学与工程学科全日制学术型博士研究生培养方案3	33
6. 冶金工程学科全日制学术型博士研究生培养方案	40
7. 畜牧学学科全日制学术型博士研究生培养方案	16
二、江苏科技大学攻读专业型博士研究生培养方案总则5	0
	58

江苏科技大学攻读全日制学术型博士 研究生培养方案总则

为更好地贯彻《关于加快新时代研究生教育改革发展的意见》(教研(2020)9号)、《关于进一步严格规范学位与研究生教育质量管理的若干意见》(学位(2020)19号)、《关于进一步规范和加强研究生培养管理的通知》(教研厅(2019)1号)等文件精神,以核心课程建设推进教学改革,以制度建设统筹构建质量保障体系,面向国家经济社会发展需要,强化科教融合和产教融合,加强学术学位博士研究生知识创新能力培养,全面提升博士研究生的培养质量,特制定本总则。

一、培养目标

- 1. 掌握马克思主义的基本原理,拥护中国共产党的领导, 热爱祖国,遵纪守法,诚信公正,科学严谨,学风端正,具有 服务国家和社会的高度社会责任感、良好的学术道德和创新创 业精神。
- 2. 掌握本学科坚实宽广的基础理论和系统深入的专门知识, 掌握所从事研究方向的研究现状和发展方向; 具有独立地、创 造性地从事科学研究的能力, 在科学或专门技术上做出创造性 的成果。
- 3. 熟练掌握一门外国语,拥有宽广的国际视野,并具有较强的外文写作能力和国际学术交流能力。崇尚科学,具有献身科学研究的探索精神、严谨的科研作风和良好的团队合作能力。
 - 4. 健康的身体和良好的心理素质。

二、学制与学习年限

博士研究生学制为 4 年,直接攻读博士学位研究生(以下简称"直博生")学制为 5 年,在籍最长学习年限累计不超过 8 年(从入学至毕业),在校攻读时间最短不得少于 3 年(直博生不得少于 4 年)。硕博连读研究生自转为博士阶段培养开始计算其博士学习年限。

三、学科和研究方向

学科名称及代码以国务院学位委员会、教育部印发的《研究生教育学科专业目录(2022年)》为准。研究方向的设置本着科学、规范、宽窄适度的原则,既有相对稳定的研究领域,又把握学科自身内涵和发展趋势,并能够体现我校的学科优势和特色。

四、课程设置和学分

博士研究生课程设置的总体要求: 有利于拓宽、深化基础理论和专业水平; 有利于掌握学科前沿的最新成果和相关学科知识; 有利于提高科研创新能力、学位论文水平以及毕业后的工作适应能力; 要整体考虑与硕士研究生培养的联系与差异,科学合理地分层次设置课程。

1. 课程设置时间要求

博士研究生课程学习一般安排 1 年内完成。直博生的课程学习一般安排 2 年内完成。

按照硕博贯通培养原则,研究生在硕士阶段已修过的课程在博士阶段可申请免修,具体免修条件由各学院制定。

2. 课程设置

研究生课程分为公共学位课、专业基础学位课、专业学位

课、专业选修课程、公共选修课五类和补修课程。

学位课是必选课(明确可选除外),包括马克思主义理论课、第一外国语、数学基础课(或其他核心课程)、专业基础学位课和专业学位课。

选修课是根据研究生的知识结构、能力水平、研究方向和 学术兴趣,由导师和博士研究生共同商定选课(明确必选除外)。 基于科研需要,经导师同意可以跨学科、跨层次选修课程,但 一般不超过2门。

公共选修课注重提升研究生的科学与人文素养、科学研究 方法、学术与职业道德等素质,主要开设"马克思恩格斯列宁 经典著作选读""科研伦理与学术规范"等课程。

补修课程是跨学科录取的博士生需要补修本学科的硕士或本科主干课程,至少2门。其中,跨学科录取的博士研究生,需补修至少2门本专业硕士阶段主干课程(计学分,但不计入最低总学分)。跨学科录取的直博生,需补修至少2门本专业本科阶段主干课程(不计学分)。

3. 课程学分要求

学术型博士研究生在校期间应修满至少14学分(不含补修硕士课程或跨学科、跨层次选修课程的学分),其中学位课不少于8学分(包括公共学位课4学分,专业基础学位课及专业学位课不少于4学分),非学位课程(选修课)不少于6学分。

直博生在校期间应修满至少 36 学分,其中学位课程不少于 23 学分(包括公共学位课 9 学分,专业基础学位课及专业学位课不少于 14 学分),非学位课程(选修课)不少于 13 学分(其中《自然辩证法概论》和论文写作指导类课程为所有专业必选

非学位课)。

除马克思主义理论课、外国语的学时、学分由学校统一确定外,其他课程一般每学分16学时,每门选修课学时数不得超过32学时(2学分),具体要求表1、表2。

	XI. NIIINET 1717 XX										
	课程类型	学分	开课学期	考核方式							
	1 7 11 14 12 19	政治	2	1	考试						
业化用和	A 公共学位课	外语	2	1	考试						
学位课程	B 专业基础学位课			₩ N- F	考试						
	C 专业学位课		≥ 4	学位点	考试						
非学位课程	=学位课程 D 选修课		≥ 6	自定	考查						

表 1: 博士生课程学习学分要求

表 2: 直博生课程学习学分要求

	学分	开课学期	考核方式		
		政治	2	1	考试
	人人工学人油	政治*	2	3	考试
当	A 公共学位课	外语	3	1-2	考试
学位课程		外语*	2	3	考试
	B 专业基础学位课			W4 /V- F	考试
	C 专业学位课		≥14	学位点	考试
非学位课程	D 选修课		≥13	自定	考查

五、其他必修环节

必修环节包括教学实践、文献阅读、科研实践和学术活动四方面内容。

1. 教学实践(1学分)

教学实践内容可以是讲授部分本专业课程,也可以辅导答疑、批改作业、指导实验、辅导或协助指导本科生课程设计、毕业论文、硕士生毕业论文。教学实践的工作量一般累计不少于16学时。教学实践计1学分。

2. 文献阅读(1学分)

为扩大博士研究生的知识面、活跃学术思想、培养独立工作能力及掌握国内外本学科及相关学科的动态,博士研究生必须较广泛地阅读中文和外文文献。导师要重视博士研究生的文献阅读,加强相关指导与考核,文献阅读计1学分。

3. 科研实践(1学分)

博士研究生应积极参加科学研究课题,并应有在导师指导下独立负责某专题或子题的研究工作经历。导师要重视博士研究生的科研实践,加强相关指导与考核,科研实践计1学分。

4. 学术活动(1学分)

博士生申请学位论文答辩前,应参加10次及以上的校内外专题讲座、研究生论坛等学术研讨活动(其中至少参加1次权威学术机构组织召开的具有较高学术影响力的重要国际学术会议),并至少做2次公开的学术报告(论文开题报告除外)。学术活动计1学分。

各学科在学校培养方案总则要求的基础上可根据学科特点 对必修环节的方式、活动次数和考核办法等做出明确的要求。 博士研究生达到必修环节要求后方可答辩。

六、培养方式

- 1. 博士生的指导方式采取指导教师为主的导师负责制,有条件的单位可成立以博士导师为首的指导小组集体指导;指导小组成员包括本学科领域不同研究方向的教师,也可以是相关学科专家和校外专家,以利于拓宽博士生的知识面,促进学科相互渗透、相互交叉。
- 2. 指导教师或指导小组根据培养方案的要求为博士生制订 出个人培养计划,并对课程学习、文献阅读、学术活动、选题 报告、学位论文等环节的要求和进度做出计划,并予以指导和 检查。
- 3. 课程教学应充分发挥博士生的主动性和自觉性,更多地 采用启发式、研讨式、参与式教学方式,鼓励博士生广泛阅读 参考文献,积极参与学术讨论、学术报告等活动。
- 4. 博士生主要以培养科学研究能力为主,重点培养其独立 从事科学研究工作的能力。

七、中期考核

全日制博士研究生须参加研究生中期考核,一般在课程学习结束后结合论文开题工作进行,按学校有关规定执行。

八、学位论文

研究生学位论文是研究生培养质量的重要标志。博士研究 生完成培养方案规定的全部课程和教育环节,取得规定学分, 方可申请论文答辩。

学位论文的形成过程,一般包括文献阅读和调研、确定选题、开题、撰写论文(含实验研究)、预答辩、论文修改、论文评阅、答辩等环节。学位论文形成过程、学生申请学位和学校评定学位等管理环节,按照学校及学院有关规定执行。

各学科对博士研究生毕业前须达到的学术成果要求做出明确规定,并根据学科特点和学院实际情况对博士研究生学术成果的数量和级别提出具体要求。

各学院除执行学校有关学位论文的规定以外,应根据各学科特点对学位论文质量(学术性、完整性、创新性、应用性、撰写等)、导师指导、论文选题、论文形式、论文评阅及论文答辩提出具体要求,还可对论文阶段的进度考核做出具体规定。

博士研究生学位论文必须在导师指导下独立完成,遵守我校有关学术道德规范管理文件,严禁各种违反学术道德的学术不端行为,如有违反,学校将根据相关规定进行处理。

九、学位授予

在规定学习年限内,完成培养方案规定的全部课程和教育 环节,取得规定学分,并通过论文答辩,经校学位评定委员会 审核,授予博士学位,同时获得博士研究生毕业证书。

十、本总则自 2023 级全日制学术型博士研究生开始执行,由研究生院负责解释。

船舶与海洋工程学科 全日制学术型博士研究生培养方案

一级学科代码: 082400 一级学科名称: 船舶与海洋工程

一、学科简介

"船舶与海洋工程"是江苏科技大学最具办学特色的标志性学科,同时也是江苏 省高校优势学科、国家重点学科培育建设点、"十三五"国防特色学科。学科下设船 舶与海洋结构物设计制造、轮机工程及水声工程三个二级学科,包括船舶与海洋工程 结构力学、船舶与海洋工程流体力学、船舶与海洋结构物先进设计制造技术、轮机系 统设计及性能优化、水声信息感知与传输技术研究方向。学科拥有国际船舶结构大会 委员3人、教育部教指委副主任和委员2人、特聘院士2人。学科先后有5人获国家 杰青、长江学者等国家级项目和人才称号,江苏省特聘教授 5 人,全国优秀教师 1 人,省教学名师1人,省333高层次人才培养工程第一层次1人、第二层次3人、 第三层次 5 人,省"青蓝工程"学术带头人 4 人,省"六大人才高峰"培养对象 6 人, 其他省级人才10余人次。学科先后获批省青蓝工程优秀学科梯队1个、省青蓝 工程优秀教学团队 1 个和省高等学校优秀科技创新团队 1 个。本学科已经成为我国船 舶工业、国防工业和海洋工程装备制造业科学研究和人才培养的重要基地之一。学科 注重国际交流与合作,与葡萄牙里斯本大学、挪威斯塔万格大学和英国斯特拉斯克莱 德大学等多所国际知名船舶类高校签订战略合作协议,并聘请里斯本大学 Soares 等 多位国际知名学者讲授专业课程, 充分拓展学生国际视野。 毕业生就业一般有船舶与 海洋工程专业相关高等院校、船级社、设计院、研究所、船厂及公司等。

二、培养目标

- 1. 热爱祖国,坚定拥护中国共产党的领导和社会主义制度,遵纪守法;具有良好的政治理论素养,掌握马克思主义基本原理和马克思主义中国化最新理论尤其是习近平新时代中国特色社会主义思想。
- 2. 培养严谨求实的科学态度和作风,具有求实创新的科研精神和良好的科研道德; 掌握本学科坚实宽广的基础理论和系统深入的专门知识,了解本学科的进展、动态和 发展前沿,具有能独立从事科学研究的能力,在学术或专门技术上做出创造性的成绩。
- 3. 具有熟练的计算机技能并具有一门外国语听、说、读、写、译和进行国际学术 交流的能力。
 - 4. 具有健康的体魄和心理素质: 具有高度的社会责任感和团队精神。

三、学制

博士研究生的学制4年,直博生的学制5年。

四、研究方向

序号	研究方向名称	研究方向简介
		开展船舶与海洋结构物冲击损伤强度、疲劳断裂与极限强度、
		环境载荷等计算方法研究,以及船舶结构优化设计、船舶与海
1	船舶与海洋工程结构力学	洋工程结构风险评估、全生命周期健康监测、船舶制造工艺力
		学等在船舶与海洋工程结构中的研究与应用。
		开展船舶与海洋结构物水动力载荷预报技术、流体性能测试与
		分析技术、船舶水弹性力学分析技术、船舶运动智能控制技术、
2	船舶与海洋工程流体力学	水下仿生推进及仿生减阻技术、船舶与海洋工程数值水池技术
		以及船舶与海洋结构物航行性能综合优化方法等方面的科学研
		究与应用。
	加加 上海 兴 壮 扣 炯 片 汫 汎	开展船舶与海洋工程数字化设计制造技术、船舶设计-制造-管
3	船舶与海洋结构物先进设	理一体化信息平台技术,以及虚拟造船、智能造船、模块化制
	计制造技术	造、现代造船模式等方面的研究与应用。
		开展船舶动力机械与轮机设备及系统的优化匹配和动态仿真、
4	★人+ロ ズ カナ ンエ、 \ 1 T kk -4ヒ /L /L	船用柴油机性能分析与优化设计、低污染燃料发动机、船舶动
4	轮机系统设计及性能优化 	力装置匹配设计与性能分析、船舶轮机自动化、传热传质强化
		与能源高效利用等方面的研究与应用。
		开展结构振动理论及应用、水下噪声原理、舰船振动及水下噪
5	水声信息感知与传输技术	声控制、水声信号与信息处理、水声通信与安全、水声目标探
		测与分析等方面的研究与应用。

五、课程设置及学分要求

博士研究生总学分≥14, 其中学位课不少于8学分, 选修课不少于6学分。 直博生总学分≥36学分, 其中学位课不少于23学分, 选修课不少于13学分。

表一: 博士研究生课程设置

课程 类别	课程名称	学时	学分	开课 时间	备注
公共	中国马克思主义与当代	32	2	秋	

	学位课	第一外国语	64	2	秋	
		实变函数论	48	3	秋	
		偏微分方程数值解法	32	2	秋	
	专业基础 学位课	泛函分析理论及应用	32	2	秋	任选1门
	一	高等应用数学	48	3	秋	
		现代工程数学	48	3	秋	
		船舶设计理论与方法	32	2	春	必选
		高等水动力学(全英文)	48	3	秋	
学位		计算流体力学(全英文)	32	2	春	082401
课		高等结构力学(全英文)	32	2	秋	任选 1门
		计算机人工智能技术	32	2	秋	
	专业	振动噪声控制	32	2	春	082402
	学位课	热力系统分析	32	2	春	任选
		机船控制基础	32	2	春	1 门
		现代水声技术专题	32	2	春	
		振动噪声控制	32	2	春	082403
		水声学原理	32	2	春	任选 1 门
		现代信号处理理论	32	2	秋	
		科研伦理与学术规范	16	1	春	必选
	公共 选修课	马克思恩格斯列宁经典著作选读	16	1	春	<i>t</i> >t
		人文素养等其他公共选修课	16	1	春	任选1门
		水声通信原理及应用	32	2	春	
非		水声阵列信号处理	32	2	春	
学 位		现代控制理论	32	2	春	
课	专业	现代通信理论与技术(博-全英文)	32	2	秋	TV4 0 37
	选修课	现代优化理论(全英文)	32	2	春	任选2门
		船舶动力装置原理	32	2	春	
		船舶轮机自动化技术	32	2	春	
		高等结构动力学(全英文)	32	2	春	

		船舶与海洋结构物载荷与动力响应 (全英文)	32	2	春	
		动力机械新能源技术与发展	32	2	春	
		船舶流体力学(全英文)	32	2	春	
		船舶与海洋结构物制造技术	32	2	春	082401
	补修	工程热力学	32	2	春	
	课程	燃烧理论与技术	32	2	春	082402
		声呐技术	32	2	春	
		水下噪声原理	32	2	秋	082403
		教学实践		1		
月	其他必修 环节	科研实践		1		
		学术活动		1		
		文献阅读		1		

表二: 直博生研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
		新时代中国特色社会主义理论与实践	32	2	秋	
	公共学	第一外国语 (硕士英语)	96	3	秋、春	
	位课	中国马克思主义与当代	32	2	秋 2	
		第一外国语 (博士英语)	64	2	秋 2	
		数学物理方程	48	3	秋	9.2年. 1
		数值分析	32	2	秋	2选1
学位	专业	实变函数论	48	3	秋 2	
课	基础学	偏微分方程数值解法	32	2	秋 2	
	位课 	泛函分析理论及应用	32	2	秋 2	5选1
		高等应用数学	48	3	秋 2	
		现代工程数学	48	3	秋 2	
		船舶设计理论与方法	48	3	秋	必选
	专业学	高等流体力学(船海)(能动)	48	3	秋	在进り口
	位课	水下噪声原理(船海)(能动)	32	2	秋	任选2门

		高等工程热力学	48	3	秋	
		现代测控理论	48	3	秋	
		船舶先进制造技术	48	3	秋	
		高等传热学	48	3	春	
		机械动力学	48	3	秋	
	专业学	声呐技术	48	3	春	
	位课	高等水动力学 (全英文)	48	3	秋 2	
		高等结构力学 (全英文)	32	2	秋 2	082401
		计算流体力学 (全英文)	32	2	春 2	任选1门
		计算机人工智能技术	32	2	秋 2	
		振动噪声控制	32	2	春 2	
		热力系统分析	32	2	春 2	082402 任选 1 门
		机船控制基础	32	2	春 2	,
		现代水声技术专题	32	2	春 2	
		振动噪声控制	32	2	春 2	082403
		水声学原理	32	2	春 2	任选1门
		现代信号处理理论	32	2	秋 2	
		自然辩证法概论	16	1	春	必选
		科研伦理与学术规范	16	1	春	必选
	公共	船舶技术与文化演变概述	16	1	春	2选1
	选修课	中国近现代船舶工业发展史	16	1	春	
bb.		马克思恩格斯列宁经典著作选读	16	1	春 2	<i></i>
非学		人文素养等其他公共选修课	16	1	春	任选1门
位课		船舶与海洋工程领域前沿技术讲座	32	2	春	082401 必选
V/•		轮机工程前沿讲座	32	2	春	082402 必选
	专业	信息与通信工程学科前沿与论文写作	32	2	秋	082403 必选
	选修课	船舶与海洋工程科技论文写作	16	1	春	082401 必选
		轮机工程科技论文写作	16	1	春	082402 必选
		船舶与海洋工程专业英语	32	2	春	

		实验流体力学	32	2	秋	
		船舶与海洋结构物水动力分析(全英文)	32	2	春	
		高性能船舶原理与设计(全英文)	32	2	春	
		船舶操纵运动预报与智能控制	32	2	春	
		计算结构力学(船海)	48	3	春	
		水弹性力学	32	2	春	
		弹塑性力学(船海)	48	3	秋	
		船舶与海洋结构物冲击损伤强度	32	2	春	
-1L		可靠性理论与风险评估	32	2	春	
非 学	专业	船舶制造工艺力学	32	2	春	
位 课	选修课	船舶不确定性设计理论与方法	32	2	秋	
• • • • • • • • • • • • • • • • • • • •		现代制造系统分析与设计	32	2	秋	
		精益造船理论与技术应用	32	2	春	
		船舶数字化设计与制造	32	2	春	
		燃烧理论与技术	32	2	春	
		高等内燃机学	32	2	春	
		机械故障诊断技术	32	2	春	
		人工环境学	32	2	秋	
		能源与动力工程现代测试技术	32	2	春	
		船舶与海洋工程动力装置设计	32	2	春	
		流动与传热的数值模拟	32	2	春	
		海洋声学仿真技术	32	2	秋	
		海洋声信道与仿真	32	2	春	
		工程优化方法	32	2	春	
		现代优化理论(全英文)	32	2	秋	创新创业课
		数字图像处理	32	2	春	
		DSP 原理及应用	32	2	秋	
		船舶与海洋工程结构动力学分析案例	16	1	春	082401
		船舶与海洋工程结构碰撞损伤机理及安全 性设计案例	16	1	春	8 选 2

		船舶与海洋平台运动响应及砰击载荷分析 案例	16	1	秋	
		海上结构物疲劳性能设计案例	16	1	秋	
		船舶智能制造案例	16	1	春	
		游艇总体设计案例	16	1	秋	
		水下潜器总体设计案例	16	1	春	
11		船舶与海洋工程数值水池案例	16	1	秋	
非学	专业	水声通信原理及应用	32	2	春 2	
位课	选修课	水声阵列信号处理	32	2	春 2	
		现代控制理论	32	2	春 2	
		现代通信理论与技术(博-全英文)	32	2	秋 2	ter vit. o .) =
		船舶动力装置原理	32	2	春 2	任选 2 门
		船舶轮机自动化技术	32	2	春 2	
		高等结构动力学(全英文)	32	2	春 2	
		船舶与海洋结构物载荷与动力响应(全英 文)	32	2	春 2	
		船舶与海洋工程导论	32	2	秋	
		船舶与海洋平台结构	32	2	秋	
		船舶生产设计	32	2	春	
		船舶原理	32	2	春	
		船舶柴油机	32	2	秋	
1	补修	工程热力学	48	3	秋	
į	果程	工程流体力学	48	3	秋	
		信号与系统	64	4	秋	
		数字信号处理	64	4	秋	
		船舶流体力学(全英文)	32	2	春	
		燃烧理论与技术	32	2	春	
		声呐技术	32	2	春	
		教学实践		1		
	他必修 环节	科研实践		1		
		学术活动		1		

文献阅读	1	

六、学科相关规定

申请博士学位的科研成果等要求按照《江苏科技大学博士、硕士学位授予工作实施细则》(江科大校〔2025〕139 号)相关规定执行。同时,博士在读期间需至少参加国际学术会议 1 次(或全国性学术会议 3 次),博士在申请答辩前需面向全校公开做与学位论文相关的学术讲座 1 次。

海洋技术与工程学科 全日制学术型博士研究生培养方案

二级学科代码:99J2 二级学科名称:海洋技术与工程

一、学科简介

海洋技术与工程作为新兴交叉学科,是利用船舶与海洋工程、材料科学与工程、信息与通信工程、控制科学与工程和系统科学等学科的交叉融合、相互促进、协同创新,解决单一学科的理论和方法难以解决的复杂科学与工程问题。该学科聚焦海洋工程与装备安全、海洋信息技术与装备、海洋新材料技术与工程应用等研究方向,以流体力学、结构力学、材料学、优化理论、系统理论等为理论基础,以电子、信息、控制等工程技术为手段,探索在海洋工程应用、海洋资源开发、海洋环境保护、海洋安全保障等领域所需的技术,设计和建造海洋开发利用以及海洋环境保护所需要的工程装备及系统,培养海洋技术与工程领域高层次复合创新型人才。

二、培养目标

- 1. 热爱祖国,坚定拥护中国共产党的领导和社会主义制度,遵纪守法;具有良好的政治理论素养,掌握马克思主义基本原理和马克思主义中国化最新理论尤其是习近平新时代中国特色社会主义思想。
- 2. 适应海洋强国战略、国防建设和国民经济建设需求,深入了解海洋技术与工程的发展现状和未来趋势,熟悉海洋工程、材料科学与工程、信息与通信工程、控制科学与工程和系统科学等多学科交叉的相关知识,具有开展海洋工程与装备安全、海洋信息技术与装备、海洋新材料技术与工程应用等领域的研发、设计与管理等能力。
- 3. 具有创新意识和国际视野,至少掌握一门外国语,能熟练地阅读本学科的外文资料,具有较好的专业文献写作和国际学术交流能力。
 - 4. 具有健康的体魄和心理素质; 具有高度的社会责任感和团队精神。

三、学制

博士研究生的学制 4 年, 直博生的学制 5 年。

四、研究方向

序号	研究方向名称	研究方向简介				
4		围绕海洋工程以及海洋工程与装备安全,开展海洋工程结构物				
	海洋工程与装备安全	设计制造、海洋工程结构水动力学、海洋工程与深海装备水动				

		力与耐波性能分析研究、悬浮装备水动力特性分析、海洋工程 结构风险评估、全生命周期健康监测研究等相关研究内容。
2	海洋信息技术与装备	以海洋智能无人系统为载体,围绕海洋信息技术与装备研制, 重点开展海洋声学传播与目标声学特性、水声通信与网络、海 洋跨越协同通信与感知、海洋雷达通信探测一体化技术、海洋 遥感探测技术、海洋图像目标智能处理、海洋无人系统自主控 制、海洋无人系统工程应用、海洋装备智能运维等研究内容。
3	海洋新材料技术与工程应用	开展海洋工程装备的制备与成形、海洋装备表面绿色涂料与涂装技术、海洋仿生/功能薄膜材料与制备技术、特种高能束表面改性技术、非晶及高熵合金涂层材料设计与制备、减阻抗污和海洋污染物处理表面处理技术等方面相关研究内容。

五、课程设置及学分要求

博士研究生总学分 $\underline{14}$ 学分,其中学位课不少于 $\underline{8}$ 学分,选修课不少于 $\underline{6}$ 学分。 直博生总学分 $\underline{36}$ 学分,其中学位课不少于 $\underline{23}$ 学分,选修课不少于 $\underline{13}$ 学分。

表一: 博士研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
	公共	中国马克思主义与当代	32	2	秋	
	学位课	第一外国语 (博士英语)	64	2	秋	
		现代工程数学	48	3	秋	
	专业基础学位课	实变函数论	48	3	秋	4选1
		泛函分析	32	2	秋	
学位		偏微分方程数值解法	32	2	春	
课		高等水动力学(全英文)	48	3	秋	
		高等结构力学(全英文)	32	2	秋	方向 1 选 1 门
	专业	计算流体力学(全英文)	32	2	春	
	学位课	现代水声技术专题	32	2	春	
		系统科学与系统工程	32	2	秋	方向 2 选 1 门
		现代信号处理理论	32	2	秋	

		材料成形技术(全英文)	32	2	秋	
		凝聚态物理 (全英文)	32	2	秋	方向 3 选 1 门
		界面扩散理论(全英文)	32	2	秋	
		科研伦理与学术规范	16	1	春	必选
	公共 选修课	马克思恩格斯列宁经典著作选读	16	1	春	
		人文素养等其他公共选修课	16	1	春	
非		高等结构动力学(全英文)	32	2	春	
学 位		船舶与海洋结构物载荷与动力响应 (全英文)	32	2	春	
课	专业 选修课	水声通信原理及应用(博士)	32	2	春	选2门
		现代优化理论(全英文)	32	2	春	
		新材料连接技术进展	32	2	春	
		焊接传感与智能控制	32	2	春	
		船舶设计理论与方法	48	3	秋	
		水下噪声原理(船海)	32	2	秋	
	补修	随机信号分析(全英文)	32	2	秋	
	课程	现代信号处理	32	2	秋	
		材料结构与性能	32	2	秋	
		材料热力学	32	2	秋	
		教学实践		1		
	其他必修	科研实践		1		
	环节	学术活动		1		
		文献阅读		1		

表二: 直博生研究生课程设置

课程 类别		课程名称	学时	学分	开课 时间	备注
	公共学位课	新时代中国特色社会主义理论与实践	32	2	秋	
学		第一外国语 (硕士英语)	96	3	秋、春	
位课		矩阵理论	48	3	秋	0.74-1
· 珠		数学物理方程	48	3	秋	2 选 1

		中国马克思主义与当代	32	2	秋 2	
		第一外国语(博士英语)	64	2	秋 2	
		船舶设计理论与方法	48	3	秋	2010
		水下噪声原理(船海)	32	2	秋	方向1
		随机信号分析(全英文)	32	2	秋	→ ← 0
		水声学原理 (硕士)	32	2	秋	方向 2
	专业	材料热力学	32	2	秋	⊹ ⊬ 0
	基础学位课	材料结构与性能	32	2	秋	方向3
		现代工程数学	48	3	秋 2	
		实变函数论	48	3	秋 2	4 14- 1
		泛函分析	32	2	秋 2	4选1
		偏微分方程数值解法	32	2	春 2	
学		船舶与海洋结构物载荷与动力响应(全英 文)	48	3	春	方向 1 3 选 2 方向 2 3 选 2
位		高等结构动力学(船海)	48	3	秋	
课		高等流体力学(船海)	48	3	秋	
		现代通信理论与技术(全英文)	32	2	秋	
		系统工程	32	2	秋	
		信号检测与估计(全英文)	32	2	秋	
		现代工程材料(全英文)	32	2	秋	
	专业学	电力电子技术	32	2	秋	方向3 3选2
	位课	材料化学	32	2	秋	
		高等水动力学(全英文)	48	3	秋 2	
		高等结构力学(全英文)	32	2	秋 2	方向 1 3 选 1
		计算流体力学(全英文)	32	2	春 2	3 /2 1
		现代水声技术专题	32	2	春 2	方向 2 3 选 1
		系统科学与系统工程	32	2	秋 2	
		现代信号处理理论	32	2	秋 2	
		材料成形技术(全英文)	32	2	秋 2	方向3

		凝聚态物理(全英文)	32	2	秋 2	3 选 1
		界面扩散理论(全英文)	32	2	秋 2	
		自然辩证法概论	16	1	春	必选
	公共	科研伦理与学术规范	16	1	春	必选
	选修课	人文素养等其他公共选修课	16	1	春	
		马克思恩格斯列宁经典著作选读	16	1	春 2	
		船舶与海洋工程领域前沿技术讲座	32	2	春	必选
		船舶与海洋结构物水动力分析(全英文)	32	2	春	
		高性能船舶原理与设计(全英文)	32	2	春	
		海洋平台强度	32	2	春	
		可靠性理论与风险评估	32	2	春	
		复合材料力学	32	2	春	
非	专业 选修课	信息与通信工程学科前沿与论文写作	32	2	秋	
学		工程优化方法	32	2	春	创新创业课
位 课		阵列信号处理	32	2	春	创新创业课
		深度学习基础	32	2	春	
		海洋声学仿真技术	32	2	秋	
		CPLD 与 FPGA 设计及应用	32	2	秋	
		材料科学与工程前沿(材料加工-全英文)	32	2	春	
		数值分析在材料工程中的应用	32	2	春	
		材料先进成形技术	32	2	春	
		材料表面改性与薄膜材料	32	2	春	
		高等涂料化学	32	2	秋	
		材料失效分析	32	2	春	
		高等结构动力学(全英文)	32	2	春 2	
		船舶与海洋结构物载荷与动力响应(全英 文)	32	2	春 2	
		水声通信原理及应用 (博士)	32	2	春 2	选2门
		现代优化理论(全英文)	32	2	春 2	
		新材料连接技术进展	32	2	春 2	

		焊接传感与智能控制	32	2	春 2	
		船舶原理	32	2	春	
		船舶与海洋工程导论	32	2	秋	
补值	修课程	信号与系统	64	4	秋	
		自动控制原理	72	4. 5	秋	
		数字信号处理	64	4	秋	
		教学实践		1		
其他	他必修 环节	科研实践		1		
€		学术活动		1		
		文献阅读		1		

六、学科相关规定

博士研究生培养过程中的其他必修环节、培养方式、中期考核、学位论文等按学校有关规定执行。申请博士学位的科研成果要求按照《江苏科技大学博士、硕士学位授予工作实施细则》(江科大校〔2025〕139号)执行,博士研究生公开发表论文的研究内容及成果,必须与学位论文的研究内容及成果相互关联。

系统科学学科 全日制学术型博士研究生培养方案

一级学科代码:071100 一级学科名称: 系统科学

一、学科简介

"系统科学"是具有江苏科技大学办学特色的标志性学科之一,上榜"2022 软 科中国最好学科排名"。本学科长期围绕社会经济、船舶制造业管理和船舶海洋工程 装备中的复杂系统建模、分析、集成和调控等问题开展深入研究,学科下设系统理论、 系统分析与集成、复杂海洋环境无人集群智慧感知与协同、船海复杂产品协同制造理 论与应用、船海装备可靠性理论与运维,5个研究方向。

现有海外院士1人、双聘院士2人,教授26人,博导11人,教育部"青年长江 学者"1人,全国"五一劳动奖章"获得者2人,全国优秀博士论文提名奖获得者1 人, 江苏特聘教授 3 人, 江苏省有突出贡献中青年专家、江苏高校"青蓝工程"中青 年学术带头人、江苏省"333高层次人才培养工程"培养对象、江苏省"六大人才高 峰"高层次人才等省级人才 24 人。拥有江苏省"六大人才高峰"创新人才团队、江 苏高校"青蓝工程"优秀学科梯队、江苏高校"青蓝工程"科技创新团队等省级科研 和教学团队7个。

学科拥有国家地方联合工程实验室、国家级实验教学示范中心等国家级平台 4 个,省部级平台8个。本学科已经成为我国船舶工业、国防工业和海洋工程装备产业 科学研究和人才培养的重要基地之一。学科注重国际交流与合作,与英国剑桥大学、 澳大利亚墨尔本大学等国际知名学府签订了国际交流协议, 聘请多位国际知名学者讲 授专业课, 充分拓展学生国际视野。

二、培养目标

- 1. 拥护中国共产党的领导, 拥护社会主义制度: 热爱祖国、遵纪守法、品行端正、 诚实守信、身心健康,有社会责任感和团队合作精神:恪守学术道德,崇尚学术诚信, 热爱科学研究,具有严谨的科研作风和锲而不舍的钻研精神。
- 2. 应具有扎实的数理基础,掌握研究复杂系统的数学方法及基本理论,并对某一 领域特定系统的性质、特点和理论有深入的了解。能熟练运用数学、计算机等手段对 复杂系统的结构、性质和演化进行深入研究。
- 3. 具有熟练的计算机技能并具有一门外国语听、说、读、写、译和进行国际学术 交流的能力。

- 4. 具有健康的体魄和心理素质。
- 5. 培养导向为交叉学科复合型人才,强调理论和实践相结合。博士学位获得者应 具备学术带头人或项目负责人的素质,具备创新精神和创新能力,能胜任高等院校教 学、科研以及企事业单位和政府机构技术、研究和管理工作。

三、学制

博士研究生的学制4年,直博生的学制5年。

四、研究方向

	四、妍兀刀问 	
序号	研究方向名称	研究方向简介
		针对船舶制造系统、船舶与海洋工程装备、非线性系统等复杂
		系统,研究现实世界中的复杂现象,揭示这些复杂系统演化发
1	系统理论	展的内在规律;针对多智能体系统,研究多智能体系统的结构
		特点与性能及宏观行为之间的关系; 研究非线性系统性能分析
		与控制设计新方法。
		针对船舶与海洋工程装备系统的多样性和复杂性,应用系统科
		学理论中的非线性系统、专家系统、智能系统等分析方法,为
2	乏 放八七十年卍	船舶系统实现最优控制与高效管理等提供理论依据和各种行之
2	系统分析与集成	有效的集成方法。针对非线性网络控制系统、水下通信系统、
		随机系统、船舶制造管理系统、船舶电力系统等,研究其稳定
		控制、优化设计等方法,提高系统工作效能。
		针对海洋环境的复杂多变,尤其是海面环境的风浪干扰及摇晃
		等困难,开展异源传感信息的融合方法研究,利用人工智能技
		术,立足多层次、跨时空的统一表征感知模型,开展多维度、
3	复杂海洋环境无人集群智	跨领域、大数据驱动的多无人系统集群协同感知理论和方法研
J	慧感知与协同	究,研究多种类无人系统协同领域中无人系统的角色分配、意
		外情境响应机制等关键理论和技术,根据不同种类无人系统的
		优势进行角色划分,构建一种分布式学习和云边缘协同智能传
		感技术理论和以实现全空间域感知互补和协同。
	 船海复杂产品协同制造理	针对船海复杂产品,研究建立需求分析、设计研发、生产制造、
4		集成验证等多个阶段的生命周期数字化模型。研究先进的管理
	论与应用 	理论以及信息集成技术,将流程体系与业务组织模式有机融合,

		定义有效的自组织平台,研究建立协同研制项目的运行机制,
		实现对项目工期、组织、成本和质量的集成管理。研究船海复
		杂产品协同研制供应链管理框架,通过对利益相关方分析,研
		究供应商管理策略,建立供应商综合评价模型及选择方法,实
		现外部资源优化配置。
		为保障装备的可靠运行,对装备进行准确的可靠性分析并提出
	船海装备可靠性理论与运维	合理有效的运维策略。构建复杂装备可靠性分析和运维决策模
5		型,研究针对装备运行过程中的可靠性分析和运维决策方法,
		提高了装备运行过程可靠性分析与运维决策的科学性及精确
		性。

五、课程设置及学分要求

博士研究生总学分≥14, 其中学位课不少于8学分, 选修课不少于6学分。 直博生总学分≥36学分, 其中学位课不少于23学分, 选修课不少于13学分。

表一: 博士研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
	公共	中国马克思主义与当代	32	2	秋	
	学位课	第一外国语(博士英语)	64	2	秋	
	专业基础	系统科学与系统工程	32	2	秋	
学	学位课	随机过程(博士)	32	2	春	
位	专业 学位课	复杂网络理论与应用	32	2	春	方向1必选
课		非线性控制理论	32	2	春	方向2必选
		数据科学与机器学习	32	2	春	方向3必选
		生产系统建模与优化	32	2	秋	方向4必选
		装备可靠性与健康管理	32	2	春	方向5必选
.,		马克思恩格斯列宁经典著作选读	16	1	春	
非学	公共 选修课	科研伦理与学术规范	16	1	春	必选
位课		人文素养等其他公共选修课	16	1	春	
		复杂系统建模与仿真	32	2	春	

		现代优化理论(全英文)	32	2	春	
				_		
		多主系统理论	32	2	春	
非		最优控制 (博士)	32	2	春	
学位	专业 选修课	船舶综合电力系统	32	2	春	
课		线性与非线性滤波	32	2	春	至少选2门
		复杂系统评估与决策	32	2	春	
		复杂系统管理理论 (博士)	32	2	春	
		泛函分析理论及应用	32	2	秋	
		随机规划与模糊规划	32	2	春	
	补修	线性系统理论	32	2	春	
	课程	管理信息系统	32	2	春	
		教学实践		1		
	其他必修	科研实践		1		
	环节	学术活动		1		
		文献阅读		1		

表二: 直博生研究生课程设置

	果程 类别	课程名称	学时	学分	开课 时间	备注
		新时代中国特色社会主义理论与实践	32	2	秋	
		第一外国语 (硕士英语)	96	3	秋、春	
		中国马克思主义与当代	32	2	秋 2	
	公共学 位课	第一外国语(博士英语)	64	2	秋 2	
学		矩阵理论	48	3	秋	4选1
位		数理统计	32	2	秋	
课		随机过程 (博士)	32	2	春 2	
		数学物理方程	48	3	秋	
	专业	凸优化	48	3	秋	
	基础学	模式识别理论及应用(全英文)	48	3	春	3选1
	位课	线性系统理论(全英文)	48	3	秋	

		系统科学与系统工程	32	2	秋 2	
		复杂网络理论与应用	32	2	春 2	方向 1 必选 除
		非线性控制理论	32	2	春 2	方向2 方 向
		数据科学与机器学习	32	2	春 2	方向3 必 选
	专业学	生产系统建模与优化	32	2	秋 2	方向 4 外 必选 ,
	位课	装备可靠性与健康管理	32	2	春 2	方向 5 至 必选 少
		演化博弈论	32	2	秋	再选
		高级人工智能	32	2	秋	3
		图论及其应用	32	2	春	门
		自然辩证法概论	16	1	春	必选
	公共 选修课	科研伦理与学术规范	16	1	春	必选
		马克思恩格斯列宁经典著作选读	16	1	春 2	
		人文素养等其他公共选修课	16	1	春	
		系统科学前沿	16	1	秋	必选
		无人自主系统研发与实践	16	1	春	
		系统辨识	32	2	春	
		计算机图形学	32	2	秋	
非		知识发现与数据挖掘(全英文)	32	2	秋	
学位		自适应控制	32	2	春	
课		鲁棒控制	32	2	春	
	专业 选修课	现代检测技术	32	2	秋	
		信息物理	32	2	春	
		船舶导航与定位(全英文)	32	2	春	
		复杂系统建模与仿真	32	2	春 2	
		现代优化理论(全英文)	32	2	春 2	
		多主系统理论	32	2	春 2	至少选2门
		最优控制 (博士)	32	2	春 2	
		船舶综合电力系统	32	2	春 2	

	线性与非线性滤波	32	2	春 2	
	复杂系统评估与决策	32	2	春 2	
	复杂系统管理理论 (博士)	32	2	春 2	
	泛函分析理论及应用	32	2	秋 2	
	随机规划与模糊规划	32	2	春 2	
1	自动控制原理	72	4. 5	秋	
	线性系统理论	32	2	春	
补修 课程	管理信息系统	32	2	春	
	微机原理与接口技术	72	4. 5	秋	
	软件工程	48	3	春	
	教学实践		1		
其他必修	科研实践		1		
环节	学术活动		1		
	文献阅读		1		

六、学科相关规定

博士研究生培养过程中的其他必修环节、培养方式、中期考核、学位论文等按学校有关规定执行。申请博士学位的科研成果要求按照《江苏科技大学博士、硕士学位授予工作实施细则》(江科大校〔2025〕139号)执行,博士研究生公开发表论文的研究内容及成果,必须与学位论文的研究内容及成果相互关联。

管理科学与工程学科 全日制学术型博士研究生培养方案

一级学科代码:1201 一级学科名称: 管理科学与工程

一、学科简介

本学科于 1998 年取得硕士学位一级学科授予权,2011 年获博士学位一级学科授 予权,现为江苏省优势学科、"十二五"省重点一级学科和"十一五"省重点学科。 拥有 1 个国家地方联合工程实验室, 1 个国家知识产权信息服务中心及 10 个省部级 科研平台,3个行业特色型科研机构,1个科研实体。本学科围绕"海洋强国"战略 需求,坚持"需求驱动、工管结合、理论提炼、应用检验、产教融合",长期专注于 信息管理与信息系统、船海工程项目管理、工业工程与管理、船海产业经济等方面的 理论和应用研究。本学科秉承"顶天、立地"的科研指导思想,坚持从实践中提炼科 学问题,理论针对性强,科研经费充足,学科影响力不断提升。本学科坚持服务船舶 行业,走特色发展之路,在我国船舶行业具有重要影响力,为船舶企业管理水平提升 做出了重要贡献。

二、培养目标

- 1. 拥护中国共产党的领导, 热爱祖国, 遵纪守法, 科学严谨, 学风端正, 具有服 务国家社会的社会责任感、高尚的学术道德、艰苦拼搏的创新创业精神;
 - 2. 具有健康的身体素质与良好的心理素质;
- 3. 熟练掌握一门外国语, 能熟练阅读本学科专业外文文献, 拥有宽广的国际视野, 并具有较强的外文写作能力和国际学术交流能力:
- 4. 系统深入地掌握管理科学与工程的基础理论和专门知识,广泛了解本学科的国 际前沿理论与最新发展动态,培养严谨求实的科学态度和作风,具备独立从事本学科 的科学研究能力:
- 5. 具有良好的数据分析能力和计算机应用能力, 具有创造性地提出新的正确的观 点、理论、方法,或科学地利用最新的研究成果解决重要实际管理问题的能力。

三、学制

博士研究生的学制4年,直博生的学制5年。

四、研究方向

序号	研究方向名称	研究方向简介
----	--------	--------

1	信息管理与信息系统	本方向从事信息集成理论、方法与技术的研究,重点以船舶制造业为对象,研究企业信息系统建模、信息系统开发与实施、信息资源挖掘与利用。
2	船舶与海洋工程项目管理	以海洋工程项目为研究对象,开展项目计划与控制、工程变更管理、大型深海海洋工程项目的管理集成平台研究。
3	工业工程与管理	研究复杂生产条件下生产计划与动态控制方法、库存控制策略、单元生产与大规模定制的关键管理技术等。
4	船舶与海洋产业经济	研究海洋产业的发展规律,揭示区域海洋协同发展的机制、 海洋产业结构变迁、海洋产业数字化、绿色化、智能化发展 路径和管理机制等。

五、课程设置及学分要求

博士研究生总学分≥14, 其中学位课不少于8学分, 选修课不少于6学分。 直博生总学分≥36学分, 其中学位课不少于23学分, 选修课不少于13学分。

表一: 博士研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
	公共	中国马克思主义与当代	32	2	秋	
学	学位课	第一外国语(博士英语)	64	2	秋	
位	专业基础	随机过程 (博士)	32	2	春	任选1门
课	学位课	优化理论与应用	32	2	春	生选111
	专业 学位课	管理科学研究方法	32	2	秋	
	公共 选修课	科研伦理与学术规范	16	1	春	必选
		马克思恩格斯列宁经典著作选读	16	1	春	
		人文素养等其他公共选修课		1	春	
非学		管理科学与工程学科前沿 (学科前沿课)	32	2	秋	必选
位课	-t- tr	信息管理研究专题(学科前沿课)	32	2	秋	建议方向1
	专业 选修课	生产系统建模与优化	32	2	秋	
		供应链建模与优化	32	2	春	建议方向 2
		博弈论及应用	32	2	秋	

	现代成本工程	32	2	春	
	知识工程与知识管理	32	2	春	建议方向3
	船舶集成制造管理	32	2	春	
	复杂经济系统建模与仿真	32	2	春	
	船舶产业经济学	32	2	春	建议方向4
	高级管理统计	32	2	秋	
补修	现代管理学	48	3	秋	
课程	运筹学	48	3	秋	
	教学实践		1		
其他必修	科研实践		1		
环节	学术活动		1		
	文献阅读		1		

表二: 直博生研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
		新时代中国特色社会主义理论与实践	32	2	秋	
	公共学	第一外国语 (硕士英语)	96	3	秋、春	
	位课	中国马克思主义与当代	32	2	秋 2	
		第一外国语(博士英语)	64	2	秋 2	
学	专业 基础学 位课	运筹学(Ⅱ)	48	3	秋	
位		高级管理学(全英文)	48	3	秋	
课		随机过程 (博士)	32	2	春 2	0.24-1
		优化理论与应用	32	2	春 2	2 选 1
		经济学(II)	32	2	春	
	专业学 位课	管理统计学	32	2	春	
		管理科学研究方法	32	2	秋 2	
非学		自然辩证法概论	16	1	春	必选
位	公共 选修课	科研伦理与学术规范	16	1	春	必选
课		马克思恩格斯列宁经典著作选读	16	1	春 2	

		人文素养等其他公共选修课	16	1	春	
		管理系统仿真	32	2	春	
		系统工程方法与应用	32	2	春	
		大数据分析与应用	32	2	秋	
		商业数据分析与决策	32	2	春	
		管理信息系统	32	2	秋	
		人因工程	32	2	秋	
		供应链构建与管理	32	2	春	
		现代工业工程	32	2	秋	
		运作管理	32	2	春	
		复杂系统管理理论	32	2	秋	
非		管理决策模型与方法	32	2	秋	
学	专业 选修课	计量经济理论与方法	32	2	秋	
位 课		行为决策科学	32	2	秋	
		管理科学与工程学科前沿(学科前沿课)	32	2	秋 2	必选
		信息管理研究专题(学科前沿课)	32	2	秋 2	建议方向1
		生产系统建模与优化	32	2	秋 2	
		供应链建模与优化	32	2	春 2	建议方向 2
		博弈论及应用	32	2	秋 2	
		现代成本工程	32	2	春 2	
		知识工程与知识管理	32	2	春 2	建议方向3
		船舶集成制造管理	32	2	春 2	
		复杂经济系统建模与仿真	32	2	春 2	
		船舶产业经济学	32	2	春 2	建议方向4
		高级管理统计	32	2	秋 2	
	A) 14	现代管理学	48	3	秋	
	补修 课程	运筹学(I)	48	3	秋	
		经济学(I)	48	3	春	
其	他必修	教学实践		1		

环节	科研实践	1	
	学术活动	1	
	文献阅读	1	

六、学科相关规定

1、学术成果要求

申请博士学位的科研成果要求除满足《江苏科技大学博士、硕士学位授予工作实施细则》(江科大校〔2025〕139 号)相关规定外,申请学位的成果中至少 1 篇论文发表在 FMS(Federation of Management Societies of China)或 ABS(The Association of Business School)目录中的期刊。

2、学位论文要求

参照学校相关要求执行。

材料科学与工程学科 全日制学术型博士研究生培养方案

一级学科代码:080500 一级学科名称: 材料科学与工程

一、学科简介

材料科学与工程为一级学科博士点,下设材料物理与化学、材料学、材料加工工程、材料腐蚀科学与防护技术 4 个二级学科博士点,建有博士后流动站;连续三期入选江苏省优势学科建设工程,"军用关键材料"入选工信部特色学科,材料科学进入ESI全球排名前 1%。建有 6 个本科专业和方向,其中,焊接技术与工程、金属材料工程为国家一流专业,高分子材料与工程、材料成型及控制工程为江苏省一流专业。本学科拥有一支结构合理的高水平优秀学科梯队,其中外籍双聘院士 1 人,教授 43 人,博导 24 人,国家"新世纪百千万人才工程"入选者 1 人,江苏省特聘教授、"333"高层次人才工程、"青蓝工程"、"六大人才高峰"、双创人才等省部级人才 27 人,江苏省十佳导师团队提名 1 个,江苏省创新团队 3 个,拥有江苏省外国专家工作室。学科实验教学及研究条件完备、仪器设备先进,拥有 1 个国家级实验教学示范中心、6 个省部级重点实验室。本学科坚持"船舶、海洋、军工"特色,服务国家海洋强国战略,致力于创新型、复合型高层次人才培养。

二、培养目标

- 1. 热爱社会主义祖国,拥护中国共产党的领导;具有严谨求实的科学态度和作风、创新求实精神和良好的科研道德,热爱科研,积极为社会主义现代化建设服务;自觉遵纪守法,品行端正,诚实守信,身心健康。
- 2. 具有坚实、宽广的材料科学与工程领域的基础理论和系统、深入的专门知识; 掌握本学科的进展、动向和发展前沿,具备独立从事本学科科学研究的创新能力和工 作能力。
- 3. 瞄准国际学术前沿,重点面向船舶、海洋、军工、新能源等领域国家重大技术 急需,能够在本学科进行前沿性、原创性基础研究和应用研究,并在科学理论或专门 技术上做出创造性成果。
- 4. 具有开阔的国际视野和团队协作能力,熟练掌握一门外国语,并可进行国际学术交流;能够胜任国内外高校和科研院所教学、研究、企业技术研发和管理工作的创新型、复合型、国际型高层次人才。

三、学制

博士研究生的学制4年,直博生的学制5年。

四、研究方向

序号	研究方向名称	研究方向简介
1	焊接工艺及装备	融合先进制造与控制理论,研究新型焊接电源及控制、先进焊接工艺与装备、焊接结构分析、焊接自动化理论与技术等。
2	新材料连接技术	开展新材料连接技术研究,包括连接方法及机理、连接过程热力学与动力学分析、连接过程计算机模拟、连接材料设计及工艺优化等。
3	材料腐蚀与防护	研究金属腐蚀特性及腐蚀机理,开发耐蚀合金、智能防腐及自修复材料、绿色腐蚀剂等防护技术以及腐蚀在线监测和大数据技术等
4	金属材料设计与表征	研究金属材料的成分与功能设计、凝固过程和组织形成规律、新型合金及其复合材料的研发与应用、组织与性能之间关系,以及采用计算材料学方法研究材料的组成、结构、性能等。
5	材料成型及特种加工	开展先进材料的制备与成形、船舶结构材料成型新技术、船舶 结构疲劳损伤机理与寿命预测等方面研究。
6	材料物理	开展包括电化学储能材料、能源转换材料、光电材料、热电材料、半导体材料等先进功能材料的设计制备、结构调控、性能 优化、机理机制等的实验和理论研究。
7	功能高分子材料	开展功能高分子的合成、结构及其性能表征,以及具有光、电、 催化等功能高分子材料和器件的制备,聚合物共混、有机/无 机杂化高分子、高分子表面功能化等方面研究。

五、课程设置及学分要求

博士研究生总学分≥14, 其中学位课不少于8学分, 选修课不少于6学分。 直博生总学分≥36学分, 其中学位课不少于23学分, 选修课不少于13学分。

表一: 博士研究生课程设置

课程 类别		课程名称	学时	学分	开课 时间	备注
	公共	中国马克思主义与当代	32	2	秋	
	学位课	第一外国语(博士英语)	64	2	秋	

		随机过程(博士)	32	2	春	
	专业基础	凝聚态物理(全英文)	32	2	秋	
	学位课	 固体化学	32	2	秋	任选1门
学 位		材料成形技术(全英文)	32	2	秋	
课		界面扩散理论(全英文)	32	2	秋	
	专业	计算化学	32	2	秋	te vila a 27
	学位课	焊接物理	32	2	秋	任选1门
		凝固原理 (全英文)	32	2	秋	
		马克思恩格斯列宁经典著作选读	16	1	春	
	公共 选修课	科研伦理与学术规范	16	1	春	必选
		人文素养等其他公共选修课		1	春	
		薄膜材料与技术前沿(学科前沿课)	32	2	春	
		高分子材料前沿(学科前沿课)	32	2	春	
		高分辨电子显微学及其应用	32	2	春	
,,		金属腐蚀研究方法	32	2	春	
非学		腐蚀电化学原理	32	2	春	
位课		纳米材料科学与技术(材料方向)	32	2	春	
	专业 选修课	纳米材料科学与技术(化学方向)	32	2	春	任选 3 门
		功能材料与器件研究前沿(全英文)	32	2	春	
		配位化学前沿(学科前沿课)	32	2	春	
		焊接新材料设计及加工技术	32	2	春	
		新材料连接技术前沿(学科前沿课)	32	2	春	
		焊接传感与智能控制	32	2	春	
		数字化焊接技术	32	2	春	
		材料热力学与动力学	48	3	秋	
		材料物理化学	48	3	秋	
	补修 课程	电子线路分析与综合	48	3	秋	跨学科至少
		高等焊接冶金	48	3	秋	选修2门
		材料结构与性能	48	3	秋	

	腐蚀电化学	48	3	秋	
	教学实践		1		
其他必修 环节	科研实践		1		
环节	学术活动		1		
	文献阅读		1		

表二: 直博生研究生课程设置

ì	课程	细和互称	学时	兴八	开课	备注
Ž	类别	课程名称	1.1	学分	时间	金 仕
		新时代中国特色社会主义理论与实践	32	2	秋	
		第一外国语 (硕士英语)	96	3	秋、春	
	公共学 位课	中国马克思主义与当代	32	2	秋 2	
	120,0	第一外国语(博士英语)	64	2	秋 2	
		数值分析	32	2	秋	
		材料热力学	32	2	秋	
		材料化学	32	2	秋	
		传热学(全英文)	32	2	秋	
	专业 基础学 位课	实验设计与数据处理原理	32	2	秋	任选3门
23/4		材料加工原理与工艺	32	2	秋	
学 位		现代工程材料 (全英文)	32	2	秋	
课		聚合物结构与性能	32	2	秋	
		随机过程 (博士)	32	2	春 2	
		凝聚态物理 (全英文)	32	2	秋 2	ケル・コ
		固体化学	32	2	秋 2	任选1门
		材料成形技术(全英文)	32	2	秋 2	
		焊接电弧物理	32	2	秋	
		功能高分子材料	32	2	秋	
	专业学 位课	高聚物测试方法	32	2	秋	任选1门
		先进功能材料与器件	32	2	秋	
		固态相变	32	2	秋	

		界面扩散理论(全英文)	32	2	秋 2	
		计算化学	32	2	秋 2	ケル・コ
		焊接物理	32	2	秋 2	任选1门
		凝固原理 (全英文)	32	2	秋 2	
		自然辩证法概论	16	1	春	必选
	公共	科研伦理与学术规范	16	1	春	必选
	选修课	马克思恩格斯列宁经典著作选读	16	1	春 2	
		人文素养等其他公共选修课	16	1	春	
		材料科学与工程前沿(材料加工)(全英文,学科前沿课)	32	2	春	
		材料科学与工程前沿(材料学) (全英文,学科前沿课)	32	2	春	任选1门
		材料科学与工程前沿(材料物化) (全英文,学科前沿课)	32	2	春	
		材料失效分析	32	2	春	
		材料表面与界面	32	2	春	
 非		微加工原理与工艺	32	2	春	
学位		先进封装结构与工艺	32	2	春	左 独 0 门
课		数值分析在材料工程中的应用	32	2	春	任选 2 门
	专业 选修课	增材制造理论与技术	32	2	春	
		先进焊接方法及装备(全英文)	32	2	春	
		高等焊接冶金	32	2	春	
		薄膜材料与技术前沿(学科前沿课)	32	2	春 2	
		高分子材料前沿(学科前沿课)	32	2	春 2	
		高分辨电子显微学及其应用	32	2	春 2	
		金属腐蚀研究方法	32	2	春 2	任选3门
		腐蚀电化学原理	32	2	春 2	
		纳米材料科学与技术(材料方向)	32	2	春 2	
		纳米材料科学与技术(化学方向)	32	2	春 2	
		功能材料与器件研究前沿(全英文)	32	2	春 2	

		1	1	1	I
	配位化学前沿(学科前沿课)	32	2	春 2	
	焊接新材料设计及加工技术	32	2	春 2	
	新材料连接技术前沿(学科前沿课)	32	2	春 2	
	焊接传感与智能控制	32	2	春 2	
	数字化焊接技术	32	2	春 2	
	材料科学基础(金属学部分)	64	4	秋	
	高分子化学	56	3. 5	春	
补修	高分子物理	56	3. 5	秋	跨学科至少
课程	材料连接原理	56	3. 5	春	选修2门
	焊接方法与设备	48	2.5	秋	
	腐蚀学	40	2.5	秋	
	教学实践		1		
其他必修	科研实践		1		
环节	学术活动		1		
	文献阅读		1		

六、学科相关规定

1、学术成果要求

全日制学术型博士学位研究生申请毕业答辩,在满足本学校有关规定的基础上,同时应达到以下学术条件:

博士研究生在读期间以江苏科技大学为第一单位,以博士研究生为第一作者,或导师为第一作者、博士研究生为第二作者(导师一作最多可认定1篇),在国内外重要学术期刊(D类及以上期刊),公开发表或录用与学位论文相关学术论文不少于3篇,且其中学校科技部门认定的B类及以上等级论文2篇,或B类论文1篇及C类论文2篇,或C类论文4篇。

如获得与学位论文有关,且为江苏科技大学第一署名单位的国家级科技成果奖 (排名不限)或省部级一、二等次科技奖 (排名前5位)或省部级三等次科技奖 (排名前3位)或授权2件国家发明专利 (排名第1,博士在读期间申请并授权)或出版学术专著 (排名前2位)或参加校认定国家级A类学科竞赛获第一等次奖 (排名第1),可视同发表C类期刊论文1篇,且最多仅可累计等效1篇。

注:不满足上述学术成果要求的博士研究生需延期半年及以上时间,在满足学校关于学术型博士研究生毕业学术条件基本要求的基础上,方可申请学位论文答辩。

2、学位论文要求

论文选题应与本学科领域相关,体现学科前沿和国家重大技术需求,应有较大的技术难度和较强的先进性。学位论文应体现研究生独立综合运用科学理论、方法和技术解决本学科前沿基础及应用科学问题的能力,并展现其创新能力;学位论文对所研究的课题应当有创造性的见解,在理论上或实际上对社会经济建设或本学科发展具有较大的意义;论文理论基础深厚,且具有原创性和先进性。其他学位论文要求参照《江苏科技大学研究生学位论文撰写要求及格式规范》、《江苏科技大学研究生学位论文工作和学术道德规范管理规定》、《材料科学与工程学院研究生学位授予质量标准》等文件执行。

冶金工程学科 全日制学术型博士研究生培养方案

一级学科代码:080600 一级学科名称: 冶金工程

一、学科简介

冶金工程是研究从各类原生矿产资源或工业及社会产生的各种二次资源中提取 和分离金属或化合物,并制成具有良好加工和使用性能及经济价值材料的工程技术学 科。江苏科技大学冶金工程学科最早源于我校 1953 年全国最早设置的焊接专业,在 "材料科学与工程"一级学科博士点及江苏省优势学科的建设和发展过程中,拓展治 金研究方向, 讲而大力开展以铜合金、船用钢、焊接冶金等为特色的冶金工程学科和 专业建设, 先后获批"有色金属冶金"二级学科硕士(2006)、江苏省首个"冶金工 程"一级学科硕士点(2011)、江苏省唯一"冶金工程"一级重点学科(2021)、江苏 省首个"冶金工程"一级学科博士点(2024)。

学科现有专任教师 54 人,其中正高级 35 人、副高级 14 人,博导 10 人,45 岁 以下青年教师占比 59.3%: 具有博士学位人员为 92.6%, 其中获得境外或外单位博士 学位或在境外从事科学研究1年以上的人员为96.3%,且93.8%具有博士学位人员的 学科专长均为本学科主干二级学科。拥有"新世纪百千万人才工程"国家级人选 1 人、江苏省有突出贡献中青年专家2名、江苏省教学名师1名、省部级高层次人才(333 工程、六大人才高峰、青蓝工程) 29 人次,"江苏省 333 工程"领军型人才团队、省 高校优秀科技创新团队、省高校"青蓝工程"优秀教学团队等省部级教学科研团队5 个。

二、培养目标

- 1. 热爱社会主义祖国, 拥护中国共产党的领导; 具有严谨求实的科学态度和作风、 创新求实精神和良好的科研道德, 热爱科研, 积极为社会主义现代化建设服务; 自觉 遵纪守法, 品行端正, 诚实守信, 身心健康。
- 2. 具有坚实、宽广的冶金工程及相关领域的基础理论和系统、深入的专门知识: 掌握本学科的进展、动向和发展前沿,具备独立从事本学科科学研究的创新能力和工 作能力。
- 3. 瞄准国际学术前沿,重点面向高效提取冶金、绿色化冶金、智能化冶金、高品 质金属材料制备等领域国家重大技术急需,能够在本学科进行前沿性、原创性基础研 究和应用研究,并在科学理论或专门技术上做出创造性成果。

4. 具有开阔的国际视野和团队协作能力,熟练掌握一门外国语,并可进行国际学术交流;能够胜任国内外高校和科研院所教学、研究、企业技术研发和管理工作的创新型、复合型、国际型高层次人才。

三、学制

博士研究生的学制4年,直博生的学制5年。

四、研究方向

序号	研究方向名称	研究方向简介
		利用物理化学的基本原理和方法,研究冶金体系的性质、冶金
1	冶金物理化学	过程的物理或化学变化规律,为金属提取工艺优化、新技术开
		发、新材料合成与制备等提供理论基础。
		主要研究从有色金属原生矿产资源提取有色金属或化合物,制
	有色金属冶金	成具有一定使用性能和经济价值的产品。以及研究冶炼、加工
2		工艺对有色金属材料力学性能和物理性能的影响及其在工程领
		域中的应用。
		由冶金工程学、化工工艺学、粉体工艺学和材料工艺学交叉形
		成的前沿学科,集冶金与材料于一体,直接制备各种特殊性能
3	材料冶金	的材料,借鉴冶金在化学和物理化学以及方法设备方面的优势,
		进行新材料开发及其制备过程的精细化和智能化控制。

五、课程设置及学分要求

博士研究生总学分≥14,其中学位课不少于8学分,选修课不少于6学分。 直博生总学分≥36学分,其中学位课不少于23学分,选修课不少于13学分。

表一: 博士研究生课程设置

课程 类别		课程名称	学时	学分	开课 时间	备注
	公共	中国马克思主义与当代	32	2	秋	
274	学位课	第一外国语 (博士英语)	64	2	秋	
学 位 课	专业基础 学位课	冶金物理化学高级课程	32	2	秋	
	专业	近代冶金与材料研究方法	16	1	秋	至少选1门
	学位课	现代冶金新技术	32	2	秋	土グル1

		焊接冶金高级课程	32	2	秋	
	专业	界面扩散理论(全英文)	32	2	秋	至少选1门
	学位课	钢铁冶金高级课程	32	2	秋	
		有色金属冶金高级课程	32	2	秋	
		马克思恩格斯列宁经典著作选读	16	1	春	
	公共	科研伦理与学术规范	16	1	春	必选
	选修课	人工智能与创新	16	1	春	
		人文素养类、体育等课程	16	1	秋、春	
		冶金工程学科前沿 (博士)	32	2	春	必选
非		冶金资源材料化学	32	2	春	
学 位	专业 选修课	冶金传输理论与应用	32	2	春	
课		冶金生态工程	32	2	春	4选1
		湿法冶金理论与新技术	32	2	春	
		智能冶金技术	32	2	春	
		新能源材料制备及应用	32	2	春	
		钢铁材料组织与性能控制	32	2	春	4选1
		冶金资源高效利用	32	2	春	
	补修	冶金学	32	2	秋	
	课程	钢铁冶金原理	32	2	秋	
		教学实践		1		
 	其他必修	科研实践		1		
	环节	学术活动		1		
		文献阅读		1		

表二: 直博生研究生课程设置

课程 类别		课程名称	学时	学分	开课 时间	备注
	Л 11	新时代中国特色社会主义理论与实践	32	2	秋	
	公共 学位课	第一外国语 (硕士英语)	64	4	秋、春	

	公共	中国马克思主义与当代	32	2	秋 2	
	学位课	第一外国语(博士英语)	32	2	秋 2	
		数值分析	32	2	秋	
学位	专业	高等冶金物理化学	64	4	秋	2)
课	基础学	冶金反应工程学	64	4	秋	2 选 1
	位课	冶金物理化学高级课程	32	2	秋 2	
		现代钢铁冶金工程	64	4	春	2选1
		现代有色冶金工程	64	4	春	2 远 1
		近代冶金与材料研究方法	16	1	秋 2	
	专业学	现代冶金新技术	32	2	秋 2	
	位课	焊接冶金高级课程	32	2	秋 2	云小进 1 门
		界面扩散理论(全英文)	32	2	秋 2	至少选1门
		钢铁冶金高级课程	32	2	秋 2	
		有色金属冶金高级课程	32	2	秋 2	
	公共	自然辩证法概论	16	1	春	必选
		科研伦理与学术规范	16	1	春	必选
	选修课	马克思恩格斯列宁经典著作选读	16	1	春 2	
		人文素养类、体育等课程	16	1	秋、春	
		冶金工程学科前沿(博士)	32	2	春 2	必选
		学术论文写作方法与规范	16	1	春	必选
非		电化学工程	32	2	春	
学位		焊接冶金学	32	2	秋	
课		夹杂物控制工艺及理论	32	2	春	6
	专业 选修课	金属材料腐蚀与防护(全英文)	32	2	春	6选2
		冶金污染控制	32	2	春	
		实验设计与数据处理	32	2	秋	
		冶金资源材料化学	32	2	春 2	
		冶金传输理论与应用	32	2	春 2	4选1
		冶金生态工程	32	2	春 2	

	湿法冶金理论与新技术	32	2	春 2	
	智能冶金技术	32	2	春 2	
	新能源材料制备及应用	32	2	春 2	4 选 1
	钢铁材料组织与性能控制	32	2	春 2	4 処 1
	冶金资源高效利用	32	2	春 2	
补修	冶金学	32	2	秋	
课程	钢铁冶金原理	32	2	秋	
	教学实践		1		
其他必修 环节	科研实践		1		
	学术活动		1		
	文献阅读		1		

六、学科相关规定

1. 学术成果要求

申请博士学位的科研成果应达到如下要求:

期刊论文 SCIE 一区论文 1 篇 (学生排名第 1); 或 SCIE 二区及以上论文 2 篇; 或 SCIE 三区及以上论文 3 篇。

如获得与学位论文有关,且江苏科技大学为第一署名单位的以下科研成果可视同发表一定级别的 SCIE 论文,所有论文替代最多以1篇计。学校学科竞赛项目认定表A1类竞赛国家级奖励(第一等次且排名第一),可视同发表 SCIE 二区论文1篇;学校学科竞赛项目认定表A1类竞赛国家级奖励(第二等次且排名第一)或学校研究生学科竞赛项目认定表A2类竞赛国家级奖励(第一等次且排名第一)或国家级科技成果奖(排名不限)或省部级一、二等次科技奖励(排名前5位)或省部级三等次科技奖励(排名前3位)或授权国家发明专利(学生排名第1或导师排名第1学生排名第2)或出版学术专著(排名前2位),可视同发表 SCIE 三区论文1篇。

注:博士研究生在读期间(硕博连读或直接攻博的研究生以正式转入博士研究生学习阶段计)必须公开正式发表或录用(提供有效的录用证明材料)一定数量(学术学位博士研究生至少正式发表1篇)与本人学位论文或实践成果内容相关的学术论文

(会议论文不计)或科研成果,发表学术论文或科研成果必须以江苏科技大学为独立署名或第一署名单位。发表学术论文博士研究生一般应为第一作者(如第一作者为导师,第二作者为博士研究生的也可计入,最多计1篇)。硕博连读的博士研究生硕士学习阶段获得的科研成果在硕士学位授予时未使用,可认定为博士研究生学习阶段的科研成果,最多认定1项。

2. 学位论文要求

论文选题应与本学科领域相关,体现学科前沿和国家重大技术需求,应有较大的技术难度和较强的先进性。学位论文应体现研究生独立综合运用科学理论、方法和技术解决本学科前沿基础及应用科学问题的能力,并展现其创新能力;学位论文对所研究的课题应当有创造性的见解,在理论上或实际上对社会经济建设或本学科发展具有较大的意义;论文理论基础深厚,且具有原创性和先进性。其他学位论文要求参照《江苏科技大学研究生学位论文工作和学术道德规范管理规定》等文件执行。

畜牧学学科

全日制学术型博士研究生培养方案

一级学科代码:090500

一级学科名称: 畜牧学

一、学科简介

本学科依托蚕业研究所和生物技术学院建设,2003 年获批特种经济动物饲养二级学科硕士授权点,2007 年获批特种经济动物饲养二级学科博士授权点,2018 年获批畜牧学一级学科博士学位授权。本学科为学校三大办学特色之一,拥有国家蚕遗传资源基因库、国家种质-镇江桑树圃、农业农村部蚕桑遗传改良重点实验室等国家级、省部级科研平台 9 个;为中国-古巴蚕桑科技合作中心依托学科,与国内外研究院所和高校交流合作广泛。

学科设有特种动物科学、畜牧生物工程和蚕桑资源利用 3 个方向。特种动物科学方向优势显著,建有全球规模最大的蚕、桑种质资源库,在蚕桑种质创新、品种培育和高效种养技术方面国际领先,我国现行养蚕核心技术体系、2/3 以上蚕品种和 1/3 的桑品种由本学科研发提供,先后获国家级科技成果奖 16 项,为我国蚕丝产业实现世界第一提供了强有力支撑。畜牧生物工程方向特色鲜明,家蚕生物反应器、分子育种等处于国内先进水平。蚕桑资源利用方向优势明显,蚕桑生物资源高值化利用、活性物质提取及产品开发、桑叶功能型畜禽饲料化利用等研究有效拓展了产业领域。

二、培养目标

- 1. 培养热爱社会主义祖国,拥护中国共产党的领导,遵纪守法,具有良好的学术 道德和科研作风,具有合作精神和创新精神,积极为社会主义现代化建设服务,面向 世界、面向未来,适应我国社会主义建设需要,德、智、体、美、劳全面发展的畜牧 学科高级专门人才。
- 2. 适应国家经济建设、社会发展和科技进步的需求,具有健康的心理和体魄,掌握畜牧学坚实宽广的基础理论和系统深入的专门知识,在科学或专门技术上做出创造性的成果,具有独立从事科学研究、教学或管理的能力。
- 3. 具备用一门外国语熟练阅读本专业外文资料的能力及较强的听、说、写、译和进行国际学术交流的能力。

三、学制

博士研究生的学制4年,直博生的学制5年。

四、研究方向

序号	研究方向名称	研究方向简介
1	はた チャト ニトト トケル エハ ご	主要研究蚕桑种质资源、遗传育种、重要性状形成分子机制、现代
1	特种动物科学	蚕业技术与装备等。
	→~ 11. 11. 11. →~ 11.	主要研究动物分子育种、功能基因及其遗传修饰、生物反应器、饲
2	畜牧生物工程	料生物技术、疾病分子诊断技术等。
		主要研究桑蚕茧丝等生物资源评价、精深加工、高值化改造与利用
3	蚕桑资源利用	技术。

五、课程设置及学分要求

博士研究生总学分≥14,其中学位课不少于8学分,选修课不少于6学分。 直博生总学分≥36学分,其中学位课不少于23学分,选修课不少于13学分。

表一: 博士研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
	公共	中国马克思主义与当代	32	2	秋	
.we	学位课	第一外国语(博士英语)	64	2	秋	
学位课	专业基础 学位课	高级分子生物学 (博士)	32	2	秋	
	专业	动物基因组学	32	2	秋	选 1-2 门
	学位课	高级动物营养学	32	2	秋	近 1-2 1
	公共 选修课	科研伦理与学术规范	16	1	春	必选
		马克思恩格斯列宁经典著作选读	16	1	春	
		人文素养、体育等公共选修课		1	春	
		畜牧学研究进展	32	2	秋	
非 学		生命科学进展	32	2	春	
位课		蚕桑学研究进展	32	2	秋	
	专业 选修课	昆虫分子科学	32	2	秋	
	10/2/10	生物信息学	32	2	秋	
		畜牧种质资源与遗传育种学专题	32	2	秋	
		动物生物工程专题	32	2	秋	
	补修	高级生物化学	32	2	秋	

课程	生物化学与分子生物学大实验	48	3	秋	
	教学实践		1		
其他必修	科研实践		1		
环节	学术活动		1		
	文献阅读		1		

表二: 直博生研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
		新时代中国特色社会主义理论与实践	32	2	秋	
	公共学	第一外国语 (硕士英语)	96	3	秋、春	
	位课	中国马克思主义与当代	32	2	秋 2	
		第一外国语(博士英语)	64	2	秋 2	
	专业	细胞生物学	32	2	春	
	基础学	高级分子生物学 (博士)	32	2	秋 2	
学	位课	动物基因组学	32	2	秋 2	
位课	专业学位课	高级动物生物化学	32	2	秋	
		现代动物营养学	32	2	秋	
		现代动物育种学	32	2	秋	
		动物繁殖生物学	32	2	春	至少选4门
		动物试验设计与数据分析	32	2	秋	
		高级植物生理学	32	2	春	
		高级动物营养学	32	2	秋 2	
		自然辩证法概论	16	1	春	必选
	公共	科研伦理与学术规范	16	1	春	必选
非	选修课	马克思恩格斯列宁经典著作选读	16	1	春 2	
学		人文素养、体育等公共选修课	16	1	春	
位课		生物化学与分子生物学大实验	48	3	秋	必选
	专业	生物学前沿	32	2	春	学科前沿课程
	选修课	畜牧学专题	32	2	秋	学科专题课程

						=
		发育生物学(全英文)	32	2	秋	
		高级微生物学	32	2	春	
		高级动物环境生物学	32	2	秋	
		蚕桑资源生物转化	32	2	春	
非		蚕桑病原微生物与生物防治	32	2	秋	
学	专业	生物资源开发与利用专题	16	1	秋	
位课	选修课	植物保护学	32	2	春	
		蚕桑学研究进展	32	2	秋 2	
		畜牧学研究进展	32	2	秋 2	
		生命科学进展	32	2	春 2	
		昆虫分子科学	32	2	秋 2	至少选2门
		生物信息学	32	2	秋 2	
		畜牧种质资源与遗传育种学专题	32	2	秋 2	
		动物生物工程专题	32	2	秋 2	
1	补修	高级生物化学	32	2	秋	
ì	果程	动物细胞培养与基因工程	32	2	春	
		教学实践		1		
其(他必修	科研实践		1		
}	环节	学术活动		1		
		文献阅读		1		

六、学科相关规定

博士研究生培养过程中的其他必修环节、培养方式、中期考核、学位论文等按学校有关规定执行。申请博士学位的科研成果要求按照《江苏科技大学博士、硕士学位授予工作实施细则》(江科大校〔2025〕139号)执行,博士研究生公开发表论文的研究内容及成果,必须与学位论文的研究内容及成果相互关联。

江苏科技大学攻读工程类专业学位博士 研究生培养方案总则

为贯彻落实《中华人民共和国学位法》,落实《教育部关于深入推进学术学位与专业学位研究生教育分类发展的意见》《专业学位研究生教育发展方案(2020-2025)》以及国务院学位委员会和全国工程专业学位研究生教育指导委员会《工程类博士专业学位研究生培养模式改革方案》《工程类博士专业学位研究生学位论文与申请学位实践成果基本要求(试行)》等文件精神,面向国家经济社会发展需要,强化科教融汇和产教融合,改革高层次应用型人才培养模式,突出"思想政治正确、社会责任合格、理论方法扎实、技术应用过硬"的工程类博士专业学位研究生培养特色,保障专业学位博士研究生培养质量,特制定本总则。

一、培养目标

紧密结合我国经济社会和科技发展需求,面向企业(行业)工程实际,坚持以立德树人为根本,培育和践行社会主义核心价值观,培养具有高度社会责任感,在相关工程领域掌握坚实宽广的理论基础和系统深入的专门知识,具备独立解决复杂工程技术问题、进行工程技术创新、组织工程技术研究开发工作等能力的高层次复合型工程技术创新人才,为造就工程技术领军人才奠定基础。具体要求为:

1.拥护中国共产党的领导,热爱祖国,具有高度的社会责任

感;服务科技进步和社会发展;恪守学术道德规范和工程伦理规范。

- 2.掌握本工程领域坚实宽广的基础理论、系统深入的专门知识和工程技术基础知识; 熟悉相关工程领域的发展趋势与前沿, 掌握相关的人文社科及工程管理知识; 熟练掌握一门外国语。
- 3.具备解决复杂工程技术问题、进行工程技术创新、组织工程技术研究开发工作的能力及良好的沟通协调能力,具备国际视野和跨文化交流能力。

二、学制与学习年限

工程类博士专业学位研究生学制为 4 年,本科直接攻读工程类博士专业学位研究生(以下简称"工程直博生")学制为 5 年,在籍最长学习年限累计不超过 8 年(从入学至毕业),在校攻读时间最短不得少于 3 年(工程直博生不得少于 4 年)。硕博连读研究生自转为博士阶段培养开始计算其博士学习年限。

三、学科和研究方向

学科名称及代码以国务院学位委员会、教育部印发的《研究生教育学科专业目录(2022年)》为准。研究方向的设置本着科学、规范、宽窄适度的原则,既有相对稳定的研究领域,又把握学科自身内涵和发展趋势,并能够体现我校的学科优势和特色。

四、课程设置和学分

博士研究生课程设置的总体要求: 有利于拓宽、深化基础理论和专业水平; 有利于掌握学科前沿的最新成果和相关学科

知识;有利于提高实践创新能力、学位论文水平以及毕业后的工作适应能力;要整体考虑与硕士研究生培养的联系与差异,科学合理地分层次设置课程。

1.课程设置时间要求

博士专业学位研究生课程学习一般安排 1 年内完成。工程直博生的课程学习一般安排 2 年内完成。

按照硕博贯通培养原则,研究生在硕士阶段已修过的课程在博士阶段可申请免修,具体免修条件由各学院制定。

2.课程设置

研究生课程分为公共学位课、专业基础学位课、专业学位课、专业选修课程、公共选修课五类和补修课程。

学位课是必选课(明确可选除外),包括马克思主义理论课、第一外国语、数学基础课(或其他核心课程)、专业基础学位课和专业学位课。

选修课是根据研究生的知识结构、能力水平、研究方向和 学术兴趣,由导师和博士研究生共同商定选课(明确必选除外)。 基于科研需要,经导师同意可以跨学科、跨层次选修课程,但 一般不超过2门。

公共选修课注重提升研究生的科学与人文素养、科学研究 方法、学术与职业道德等素质,主要开设"马克思恩格斯列宁 经典著作选读""科研伦理与学术规范""高级项目管理""科技 与工程伦理"等课程。

补修课程是跨学科录取的博士生需要补修本学科的硕士或

本科主干课程,至少 2 门。其中,跨学科录取的博士研究生,需补修至少 2 门本专业硕士阶段主干课程(计学分,但不计入最低总学分)。跨学科录取的直博生,需补修至少 2 门本专业本科阶段主干课程(不计学分)。

3.课程学分要求

专业学位博士研究生在校期间应修满至少 12 学分(不含补修硕士课程或跨学科、跨层次选修课程的学分),其中学位课不少于 8 学分(包括公共学位课 4 学分,专业基础学位课及专业学位课不少于 4 学分),非学位课程(选修课)不少于 4 学分。

工程直博生在校期间应修满至少 33 学分,其中学位课程不少于 21 学分(包括公共学位课 9 学分,专业基础学位课及专业学位课不少于 12 学分),非学位课程(选修课)不少于 12 学分(其中《自然辩证法概论》和《工程伦理》为所有专业必选非学位课)。

除马克思主义理论课、外国语的学时、学分由学校统一确定外,其他课程一般每学分 16 学时,每门选修课学时数不得超过 32 学时(2 学分),具体要求表 1、表 2。

表 1: 专业学位博士生课	程学习:	学分要求
	27. 47.	- W W

课程类型			学分	开课学期	考核方式
	A 公共学位课	政治	2	1	考试
业 / 田 和		外语	2	1	考试
学位课程 	B 专业基础学位课			W4 /V- F	考试
	C 专业学位课		≥ 4	学位点	考试
非学位课程	D 选修设	选修课		自定	考查

表 2: 工程直博生课程学习学分要求

	学分	开课学期	考核方式		
		政治	2	1	考试
	A 公共学位课	政治*	2	3	考试
当		外语	4	1-2	考试
学位课程		外语*	2	3	考试
	B 专业基础学位课			W /	考试
	C 专业学位课		≥11	学位点	考试
非学位课程	D 选修设	D 选修课		自定	考查

五、其他必修环节

其他必修环节包括学术活动和专业实践。

1.学术活动(1学分)

博士生申请学位论文答辩前,应参加10次及以上的校内外专题讲座、研究生论坛等学术研讨活动(其中至少参加1次权威学术机构组织召开的具有较高学术影响力的重要国际学术会议、技术交流会等),并至少做2次公开的学术报告或技术交流报告(开题报告除外)。学术活动计1学分。

2.专业实践(5学分)

专业实践是工程类博士专业学位研究生获得实践经验,提高实践能力的重要环节。专业学位博士研究生实践活动可采用集中实践与分段实践相结合的方式。实践过程注重学思结合、知行统一,着力培养专业学位博士研究生勇于探索的创新精神、善于解决问题的实践能力;引导专业学位博士研究生深刻理解并自觉践行职业精神和职业规范,扎根中国大地了解国情民情,

在实践中增长智慧才干,在艰苦奋斗中锤炼意志品质。具有 2 年及以上企业工作经历的工程类博士专业学位研究生专业实践时间不应少于 6 个月,不具有 2 年企业工作经历的工程类博士专业学位研究生专业实践时间应不少于 1 年。非全日制工程类博士专业学位研究生专业实践可结合自身工作岗位任务开展。

六、培养方式

- 1.专业学位博士生的培养采取课程学习、实践训练和学位论 文相结合的培养方式,应坚持专业知识能力培养与思想、政治、 品德和法纪相结合。积极开展有益的学术活动、科技活动、文 化体育活动和社会活动。
- 2.专业学位博士生的培养应紧密围绕我国经济社会和科技 发展需求,结合工程领域的重大、重点项目,面向企业、行业 工程实际,坚持立德树人为根本,培育和践行社会主义核心价 值观,培养专业学位博士研究生进行综合性、应用型技术创新 的能力。
- 3.专业学位博士研究生的培养实行导师负责制和校企导师团队共同指导相结合的原则,由校内相应学科、专业点安排具有实践经验的研究生导师(校内导师)与企业推荐的业务水平高、责任心强、具有丰富经验的技术或管理人员担任联合指导教师(校外导师)联合指导。重视发挥行业、企业在培养中的积极作用,为研究生创造良好的专业实践和专业学位论文研究条件。

七、中期考核

专业学位博士研究生须参加研究生中期考核,一般在课程学习结束后结合开题工作进行,按学校有关规定执行。

八、学位论文与申请学位实践成果

工程类博士专业学位研究生完成培养方案规定的全部课程和教育环节,取得规定学分,方可申请论文答辩或实践成果答辩。

1.学位论文

学位论文的形成过程,一般包括文献阅读和调研、确定选题、开题、撰写论文(含实验研究)、预答辩、论文修改、论文评阅、答辩等环节。

工程类博士专业学位研究生学位论文,应主要聚焦工程实践和应用研究,须体现工程性、创新性、实践性、应用性等特征。选题应直接来源于工程实际,符合伦理规范,鼓励面向发展新质生产力,面向战略新兴产业或未来产业发展前沿,依托重要工程项目开展选题研究,鼓励开展工程技术项目相关产业的可行性分析研究、重大原创性基础研究成果转化的产业化应用探索,鼓励通过问题导向、需求导向推动创新,引领技术革新和产业变革。学位论文内容可围绕工程新技术研究、工程设计与实施、工程应用研发等撰写。学位论文的研究成果应具有创新性,对行业企业技术升级和产业发展产生积极的推动作用。

2.申请学位实践成果

申请学位实践成果的形成过程,一般包括实践成果申请学位可行性论证、实践成果实施、实践成果总结报告撰写、实践成果展示与鉴定或评审、实践成果答辩等环节。

申请学位实践成果应聚焦工程实际需求,以实体或工程形象展示形式呈现,须体现工程性、创新性、实践性、应用性和可展示性等特征。实践成果应来源于技术攻关与工程或设备改

造、工艺与产品创新、新材料与新设备的研发、前沿技术引进 吸收与再创新、工程设计与实施、技术标准的制定与优化、原创性研究成果转化与产业化探索等。实践成果的形式主要包括 重大装备、仪器设备、其他硬件产品、软件产品、设计方案、技术标准,以及其他体现相关专业领域特色的同等水平的实践成果。申请学位实践成果,应包括可展示实体形式和实践成果总结报告书面形式。实践成果应具有创新性,对行业企业技术升级和产业发展产生积极的推动作用。

工程类博士专业学位研究生学位论文与申请学位实践成果, 必须在校企导师组指导下独立完成,遵守我校有关学术道德规 范管理文件,严禁各种违反学术道德的学术不端行为,如有违 反,学校将根据相关规定进行处理。

九、学位授予

在规定学习年限内,完成培养方案规定的全部课程和教育环节,取得规定学分,并通过论文或申请学位实践成果答辩, 经校学位评定委员会审核,授予博士专业学位,同时获得博士专业学位研究生毕业证书。

十、本总则自 2025 级工程类专业学位博士研究生开始执行, 由研究生院负责解释。

土木水利专业学位博士研究生培养方案

专业代码:0859 专业名称: 土木水利

一、学位点简介

土木水利专业学位博士点聚焦海洋强国重大战略需求, 重点在土木与近岸工程、 海洋工程装备、海洋工程材料及制造技术、海洋资源开发与环境保护等方向展开研究。 本学位点现有 148 位专任教师, 其中 85%教师主持过或作为骨干参加过省部级及以上 重点工程类项目,92%教师主持过行业委托项目;拥有海外院士5人,国家杰青、国 家千人等国家级重要人才8人,江苏省杰青、教学名师等省部级人才33名,拥有省 双创团队、JM 融合创新团队等省级教学、科研团队 12 个;有 35%骨干教师参与过本 单位或其他单位海洋工程领域等土木水利类博士研究生的指导工作:拥有行业教师 113 位,其中省研究生产业教授 34 位,企业兼职导师 74 位,均主持或参加过省部级 及以上工程研究课题和工程技术项目,行业导师全过程参与博士研究生的指导与培养。 本学位点现有国家地方联合工程实验室、国家"111"引智基地、国家级创新创业实 践基地等国家平台, 近五年承担国家重点研发计划、工信部重大专项、企业委托项目 等千万级重大工程项目 15 项,第一单位获国家一级学会科学技术一等奖 5 项,参研 获国家科技进步特等奖 1 项。通过打造专兼结合的高水平师资队伍,着力提升解决土 木水利领域国家重大工程关键技术的科研能力,致力于培养面向海洋工程、土木工程 等土木水利领域的高层次应用型领军人才,并积极搭建国家及省部级科研平台,服务 海洋强国重大战略和行业需求。

二、培养目标

本专业学位博士点旨在培养服务土木水利行业领域国家重大战略需求,政治素质过硬,基础理论功底扎实,专业技术能力和水平突出,能够进行工程设计、建造和运维,具备较强工程技术创新创造能力和国际视野,善于解决复杂工程技术问题的土木水利行业领域高层次应用型未来领军人才。具体要求为:

- 1. 热爱祖国,坚定拥护中国共产党的领导,遵纪守法;具有良好的政治理论素养,掌握马克思主义基本原理和马克思主义中国化最新理论尤其是习近平新时代中国特色社会主义思想。
- 2. 掌握土木水利工程领域坚实宽广的基础理论、系统深入的专门知识和工程技术基础知识; 熟悉相关工程领域的发展趋势与前沿, 掌握相关的人文社科及工程管理知识; 熟练掌握一门外国语。

- 3. 具备较强工程技术创新创造能力,善于解决土木、水利、海洋工程领域复杂工程技术问题,能够独立开展本领域科学创新及技术革新,具备组织工程技术研究开发能力、良好的沟通协调能力、跨文化交流能力及国际视野。
 - 4. 具有健康的体魄和心理素质; 具有高度的社会责任感和团队精神。

三、学制

学制4年。

四、研究方向

序号	研究方向名称	研究方向简介
		针对海洋交通、海洋能源开发基础设施长寿命安全等重大需求,
		开展土木与近岸工程结构防灾与安全、港口航道疏浚、复杂海
1	土木与近岸工程	况交通设施韧性等方面的研究。在离岸快速成岛、海洋土动力
		学与地震工程等方面极具特色。
		针对海洋工程装备研发、设计与制造重大需求,开展整体装备
2	海洋工程装备	及设备理论和工程应用研究。在新型海工装备设计与研制、数
		字化设计制造、工艺力学等研究方向极具特色。
		针对海洋工程装备材料及先进焊接技术需求,开展海洋工程装
3	海深工和针刺五刺连针子	备新材料、特种焊接技术及智能装备研发和工程应用研究。在
3	海洋工程材料及制造技术	海工特种材料与加工、高效焊接、大尺度复杂构件高精度制造
		技术等方面极具特色。
		针对海洋资源开发技术创新及海洋环境保护重大需求,开展深
4	海深波河里上耳径归拉	海采矿技术和装备、海洋新能源、海洋环境保护的应用研究。
4	海洋资源开发与环境保护	在钻井和生产立管、海上制氢储氢、舱室环境控制、海洋污染
		物治理等方向极具特色。

五、课程设置及学分要求

博士研究生课程总学分≥16,其中学位课≥12学分,选修课≥4学分。

表一: 博士研究生课程设置

	课程 类别	课程名称	学时	学分	开课 时间	备注
学位	公共	中国马克思主义与当代	32	2	秋	
课	学位课	第一外国语 (博士英语)	64	2	秋	

		高等应用数学	48	3	秋	
	专业基础 学位课	现代工程数学	48	3	秋	任选1门
	1 mole	英文科技论文写作	32	2	秋	
		土木水利前沿专题讲座	32	2	春	必选 校企联合课
		计算固体力学	32	2	春	
		结构动力学及工程应用	32	2	秋	
		高等混凝土结构理论与应用	32	2	春	
		岩土工程理论与应用	32	2	春	
		流体力学理论及其应用	32	2	秋	
	专业 学位课	海工装备热力系统分析与优化	32	2	秋	24.0.2 17
		高技术海工装备 AI 应用	32	2	春	选 2-3 门
		船舶先进焊接技术及质量控制	32	2	春	
		机船控制基础	32	2	春	
		工程结构安全韧性与智慧诊治	32	2	春	
		船舶与海洋工程设计理论与方法	32	2	春	
		海洋工程材料力学	32	2	春	
		科技与工程伦理专题	16	1	春	必选
		科研伦理与学术规范	16	1	春	必选
	公共	马克思恩格斯列宁经典著作选读	16	1	春	
	选修课	高级工程项目管理	32	2	春	
		人工智能与创新	16	1	春	
非		人文素养类其他课程	16	1	春	
学 位		海洋能利用技术	32	2	春	
课		海洋工程环境保护	32	2	春	
		海洋结构物设计技术	32	2	春	
	专业	海洋结构物制造技术	32	2	春	任选1门
	选修课	海洋工程新材料技术	32	2	春	
		碳中和概论	32	2	春	
		工程结构抗震与防灾减灾技术	32	2	春	

		海洋结构耐久性	32	2	秋	
	专业	现代土木工程项目管理	32	2	春	任选1门
	选修课	海洋工程定位技术	32	2	春	
		海洋工程环境设计条件与计算方法	32	2	秋	
		新能源与节能技术	32	2	春	
	补修	高等流体力学	48	3	秋	
	课程	高等结构力学	48	3	秋	
其他必修		学术活动		1		
环	环节	专业实践		5		

六、学科相关规定

1. 专业实践要求

土木水利博士专业学位研究生必须开展专业实践,可采用集中实践与分段实践相结合的方式。全日制土木水利博士专业学位研究生原则上应进入学校认可的研究生培养基地参加专业实践,实践时间不少于 12 个月(卓工学院的博士研究生专业实践时间不少于 24 个月)。非全日制土木水利博士专业学位研究生可结合自身工作岗位任务开展专业实践。专业实践全过程由校内和企业导师共同负责,实践项目由双方围绕本领域前沿关键工程问题协商确定,联合产出科研成果并撰写《专业实践总结报告》。专业实践环节以完成的实践报告和实践所在单位评语和相关科研成果作为考核依据,有明确的考核指标,实践成果须反映土木水利博士专业学位研究生在工程能力和工程素养方面的成效。

2. 学术成果要求

申请博士学位的科研成果要求按照《江苏科技大学博士、硕士学位授予工作实施细则》(江科大校〔2025〕139号)相关规定执行,同时须满足下列条件之一:

- (1) 获国家自然科学奖、国家技术发明奖、国家科学技术进步奖 1 项(学生排名前 10, 江苏科技大学为参加单位、有获奖证书),且发表核心及以上论文 1 篇(学生排名第 1, 江苏科技大学单位排名第 1);
- (2) 获省部级一等奖 1 项(学生排名前 3, 江苏科技大学单位排名前 2), 且发表核心及以上论文 1 篇(学生排名第 1, 江苏科技大学单位排名第 1);
- (3) 获省部级二等奖 1 项(学生排名前 2, 江苏科技大学单位排名第 1), 且发表核心及以上论文 1 篇(学生排名第 1, 江苏科技大学单位排名第 1);

- (4) 发表 SCIE 论文 1篇(学生排名第1或导师排名第1学生排名第二,江苏科技大学单位排名第1)或 EI 论文 2篇(学生排名第1或导师排名第1学生排名第二,江苏科技大学单位排名第1),且以江苏科技大学为第1单位至少满足以下1条:
 - ①获授权国家发明专利1件(学生排名第1或导师排名第1学生排名第2);
 - ②主编或参编国家标准或行业标准1项(学生排名前3);
 - ③主持国家级或省部级重点科研项目1项。

注:博士研究生在读期间(硕博连读或直接攻博的研究生以正式转入博士研究生学习阶段计)必须公开正式发表或录用(提供有效的录用证明材料)一定数量与本人学位论文或实践成果内容相关的学术论文(会议论文不计)或科研成果,发表学术论文或科研成果必须以江苏科技大学为独立署名或第一署名单位。发表学术论文博士研究生一般应为第一作者(如第一作者为导师,第二作者为博士研究生的也可计入,最多计1篇)。硕博连读的博士研究生硕士学习阶段获得的科研成果在硕士学位授予时未使用,可认定为博士研究生学习阶段的科研成果,最多认定1项。

3. 学位论文与申请学位实践成果要求

土木水利博士专业学位研究生申请学位的论文或实践成果应以汉语撰写(外籍学生经批准可用外文撰写),汉语字数不少于7万字(英文论文单词不少于3万单词量)。论文或实践成果内容应立论正确、数据可靠、推理严谨、表述准确、层次分明、文字简练。论文或成果格式要求按《江苏科技大学研究生学位论文工作和学术道德规范管理规定》执行。论文或成果内容应与解决重大工程技术问题、实现企业技术进步和推动产业升级紧密结合,可以是工程新技术研究,重大工程设计或新样机研制等。